"15. You have developed a set of criteria for evaluating distressed credits. Companies that do not receive a passing score are classed as likely to go bankrupt within 12 months. You gathered the following information when validating the criteria: ● Forty percent of the companies to which the test is administered will go bankrupt within 12 months: P(nonsurvivor) = 0.40. ● Fiftyfive percent of the companies to which the test is administered pass it: P(pass test) = 0.55. ● The probability that a company will pass the test given that it will subsequently survive 12 months, is 0.85: P(pass test  survivor) = 0.85. A. What is P(pass test  nonsurvivor)? B. Using Bayes’ formula, calculate the probability that a company is a survivor, given that it passes the test; that is, calculate P(survivor  pass test). C. What is the probability that a company is a nonsurvivor, given that it fails the test? D. Is the test effective? I cannot understand how to make a tree for this problem. The question is not clear. I am unable to figure out what comes first survivor, non survivor or pass/fail. Is the question construction proper? Can we expect such a question on the exam?
P(A) = P(A&B) + P(A&~B) = P(AB)P(B) + P(A~B)P(~B)
P(pass test) = P(pass testsurvivor)P(survivor) + P(pass testnonsurvivor)P(nonsurvivor)
0.55 = 0.85 × 0.60 + P(pass testnonsurvivor) × 0.40
P(pass testnonsurvivor) = (0.55 – 0.85 × 0.60) / 0.40 = 0.10
P(survivorpass test) = P(pass testsurvivor)P(survivor)/P(pass test)
= 0.85 × 0.60 / 0.55 = 0.9273
P(nonsurvivorfail test) = P(fail testnonsurvivor)P(nonsurvivor)/P(fail test)
[1 – P(pass testnonsurvivor)] × 0.40 / 0.45
= 0.90 × 0.40 / 0.45
=0.8000
Seems pretty good.
Given the data, it will easier to construct the tree with survivor/nonsurvivor first, then pass/fail second.
Yup.
Perhaps one of these questions.
No. This was not what I was asking for. Sorry, I couldn’t put myself across. All I wanted to know is how will aI create the probability tree in this case ( the two case tree which has been covered at Level 1). I was of the opinion that we could solve all such problems by constructing a tree, just that I couldn’t build one for this.
Well, then . . . start with:
Survive/Don’t Survive

Up, Survive, P = 1 – 0.40 = 0.60
 Up, Pass, P = 0.85, Total P = 0.60 × 0.85 = 0.51
 Down, Fail, P = 0.15, Total P = 0.60 × 0.15 = 0.09

Down, Don’t Survive, P = 0.40
 Up, Pass, P = _ A _, Total P = 0.55 – 0.51 = 0.04
 Down, Fail, P = _ B _, Total P = 0.40 – 0.04 = 0.36
You have to solve for A and B :
0.40 × A = 0.04
A = 0.04 ÷ 0.40 = 0.10
0.40 × B = 0.36
B = 0.36 ÷ 0.40 = 0.90
x = (survivor  pass test)= 51
 pass = 55
 (55x) = (nonsurvivor  pass test) = 4
100 tests  
y = (survivor  fail test) = 9
 fail = 45
(45x) = (nonsurvivor  fail test) = 36
Given p(survivor) = 10.4=0.6 therefore total 60 survivors from 100 test takers
P(pass test  survivor) = 0.85 implies (x/60)=0.85 therefore x=51; y=(6051)=9
A. What is P(pass test  nonsurvivor)? = 4/(4+36) = 0.10 B. Using Bayes’ formula, calculate the probability that a company is a survivor, given that it passes the test; that is, calculate P(survivor  pass test).=51/55= 0.93 C. What is the probability that a company is a nonsurvivor, given that it fails the test? = 36/45 = 0.80
I got confused because I was wondering as to how can something not survive and still pass? Weird. Anyway, thanks to both of you.